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Dissociating motoric and motivational effects of pharmacological manipulations on operant behavior is
a substantial challenge. To address this problem, we applied a response-bout analysis to data from rats
trained to lever press for sucrose on variable-interval (VI) schedules of reinforcement. Motoric,
motivational, and schedule factors (effort requirement, deprivation level, and schedule requirements,
respectively) were manipulated. Bout analysis found that interresponse times (IRTs) were described by a
mixture of two exponential distributions, one characterizing IRTs within response bouts, another
characterizing intervals between bouts. Increasing effort requirement lengthened the shortest IRT (the
refractory period between responses). Adding a ratio requirement increased the length and density of
response bouts. Both manipulations also decreased the bout-initiation rate. In contrast, food
deprivation only increased the bout-initiation rate. Changes in the distribution of IRTs over time
showed that responses during extinction were also emitted in bouts, and that the decrease in response
rate was primarily due to progressively longer intervals between bouts. Taken together, these results
suggest that changes in the refractory period indicate motoric effects, whereas selective alterations in
bout initiation rate indicate incentive-motivational effects. These findings support the use of response-
bout analyses to identify the influence of pharmacological manipulations on processes underlying
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operant performance.

Key words: motivation, effort, tandem ratio, extinction, bouts, lever press, rats

Since Skinner (1938/1991), the rate at
which an operant is emitted has served as the
principal measure of the effectiveness of
reinforcement (Killeen & Hall, 2001, but see
Hursh & Silberberg, 2008). Free operant
response rate, however, is not a unitary phe-
nomenon. Under most contingencies of rein-
forcement, operant performance seems to be
organized in bouts separated by relatively long
pauses. Boutlike organization is evident in
break-and-run patterns observed under fixed-
ratio (FR) schedules of reinforcement (Felton
& Lyon, 1966), fixed-interval (FI) schedules
(Schneider, 1969), and peak timing procedures
(Church, Meck & Gibbon, 1994; Sanabria,
Thrailkill & Killeen, 2009). Bout-and-pause
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patterns are more readily visible in variable-
ratio (VR; Reed, 2011) and variable-interval
(VI) schedules (Conover, Fulton, & Shizgal,
2001; Shull, Gaynor & Grimes, 2001). These
patterns suggest that response rate is constitut-
ed by two underlying rates—the rate at which
bouts are initiated, and the rate at which
responses are emitted while in a bout.

Shull and colleagues (Shull et al., 2001,
2002; Shull, 2004) have shown that the
components of operant response rate in VI
schedules, bout-initiation rate and within-bout
response rate, are differentially sensitive to
various experimental manipulations. Bout
initiation rate, but not within-bout response
rate, positively covaries with rate of reinforce-
ment and level of deprivation (Shull et al,
2001, 2002; Shull, 2004). The addition of an
unsignaled ratio requirement at the end of a
scheduled interval increases the probability of
remaining in a bout after a response (Shull et
al., 2001; Shull & Grimes, 2003; Shull, Grimes
& Bennett, 2004). The rate of initiation and
the length of bouts decrease with time in
extinction (Shull et al., 2002). Taken together,
these results suggest that, under VI schedules,
(1) bout initiation rate depends primarily on
rate of reinforcement and deprivation, and (2)
within-bout response rate is sensitive to sched-
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ule demands such as tandem ratio require-
ments.

The differential sensitivity of the compo-
nents of response rate to motivational and
schedule manipulations (e.g., deprivation level
and tandem ratio requirement, respectively)
suggests that important psychological process-
es may be dissociated in nonhuman animals
on the basis of critical aspects of operant
performance. Such capability has significant
implications in behavioral neuroscience, be-
cause the isolation of psychological processes
is a prerequisite to the identification of their
underlying neural processes and structures. In
this regard, it would be ideal if the bout-and-
pause analysis could be extended to dissociate
motoric effects in addition to its dissociation of
motivational and schedule effects. Indeed,
motoric effects are of great concern in
biopsychological research, because they are
often confounded with changes in motivation
(Avila et al., 2009; Salamone, Correa, Farrar,
Nunes, Pardo, 2009; we refer to the experi-
mental variation in these effort requirements
as effort or motoric manipulations).

The present study aimed to replicate the
schedule and deprivation-level effects demon-
strated by Shull and colleagues (2001, 2002,
2004), and to expand upon them by investi-
gating the effect of effort requirement on
response rate. We manipulated effort by
varying the height and force requirement of
the levers, and motivation for food by imple-
menting a 24-hr deprivation period. Our goal
was to use the bout-and-pause analysis to
characterize the differential effects of motiva-
tional (deprivation level), motoric (lever
height and force requirement), and schedule
(presence/absence of tandem FR require-
ment) manipulations on response rate, and
to identify performance parameters (bout-
initiation rate, within-bout response rate,
etc.) that are differentially sensitive to these
manipulations. Identifying such effects is
critical to establish a means of determining
whether changes in response rate caused by a
drug are due to an alteration in the motivation
for the reinforcer or due to changes in motor
capacity. To avoid interactions between the
treatment drug and the reinforcer—in partic-
ular if the reinforcer is another drug—tests are
often conducted under extinction conditions
(Fuchs, Tran-Nguyen, Specio, Groft & Neise-
wander, 1998; Stewart & de Wit, 1987). We

therefore introduced a novel, dynamic model
to account for changes in model parameters
during extinction.

A Bout-and-Pause Model of VI Performance

In a recent series of studies, Shull and
colleagues (Shull & Grimes, 2003; Shull, 2004;
Shull et al., 2004) analyzed the distribution of
VI interresponse times (IRTs) wusing log
survival analyses, and found evidence that such
a distribution is more accurately described as a
mixture of two exponential distributions—one
characterized by very short, burstlike IRTs,
and the other characterized by much longer
IRTs. This is consistent with the view that a rat
can be in either one of two states during a
session—an engaged or a disengaged state
(see also Heyman, 1988). When the rat is in
the engaged state, it responds at a relatively
high rate (w, within-bout response rate)
according to a Poisson process, generating
the exponential distribution of short IRTs.
After each response there is a constant
probability (1 — ¢) that the rat will remain in
the engaged state and continue to respond at a
high rate. There is a complementary probabil-
ity (¢) that the rat will quit the engaged state
and enter the disengaged state. In the disen-
gaged state, the rat may perform responses
incompatible with the target response (e.g.,
locomotion, grooming, etc.) or may simply be
quiescent for a period of time. Once that
period of time elapses, the rat will revisit the
target operandum to emit a response, thus
reentering the engaged state. The target
responses that terminate the disengaged state
are therefore called bout-initiation responses.
The exponential shape of the distribution of
intervals between bouts implies that bout-
initiation responses are governed by another
Poisson process, albeit one with a much lower
rate (b, bout-initiation rate) than the process
that controls within-bout responses. Thus,
there is evidence that operant responding is
not a unitary process, but instead occurs in
distinguishable bouts, and that overall re-
sponse rate is actually a composite of two
classes of responses—fast within-bout respons-
es and slower bout-initiation responses.

According to this model, the probability
density of an IRT of length 7, p(IRT = t), in VI
schedules of reinforcement can be described
by the following bi-exponential distribution
(Shull & Grimes, 2003; Shull, 2004; Shull
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et al., 2004):
PURT=1)=(1—q)we™ " +qbe” ", (1)

where wis the mean within-bout response rate;
bis the mean bout-initiation rate, and 1 — ¢is
the proportion of IRTs that are emitted during
a bout; ¢ is therefore the proportion of IRTs
that separate bouts (which is the same as the
probability of quitting the engaged state after a
response). Overall response rate is thus a
composite process controlled by three param-
eters, ¢, w, and b We call this model the -
exponential model. Note that setting ¢ to zero (or
one) reduces Equation 1 to an exponential
distribution, which would be a good descrip-
tion of operant performance not organized in
groups of bouts.

The Refractory Period

Equation 1 assumes that after a response is
made, an animal can instantaneously make
another response (i.e., there is no dead time
between responses). This is likely to be incor-
rect— physical limitations impose ceilings on
response rates (Killeen, 1994; Killeen & Sito-
mer, 2003), which yield a dead, or refractory,
period after each response during which the
animal cannot make another response (Killeen,
Hall, Reilly, & Kettle, 2002). This refractory
period, which we call 9, is longer for responses
that take longer to complete, probably like
those that involve a higher workload. We
include 6 in Equation 1 as

p(IRT =1|t<8)=0

PIRT=1|t=28)=(1—q)we 0= 4 ghe 29
(2)

We call Equation 2 the refractory bi-exponential
model. Note that fixing 6 at zero in Equation 2
reduces it to Equation 1. Figure 1 provides a
schematic diagram of the refractory bi-expo-
nential model underlying Equation 2.

Predictions

Prior data suggest that food deprivation
covaries with the rate at which response bouts
are initiated, but not with response rates
within bouts in VI schedules (Shull et al.,
2001, 2002; Shull, 2004). Accordingly, we
anticipated that depriving rats of food would
increase b (bout-initiation rate), but not w

Respond

b
<—1-q—é—q—>

Fig. 1. A diagram of the refractory bi-exponential
model of operant performance. The lever press requires
time 8 to complete. Following a response, the rat either
remains in the engaged state with probability 1—¢ and
responds on the lever at rate w, or exits the engaged state
with probability ¢ and returns at rate b.

1/w 1/b

(within-bout response rate) or ¢ (probability of
quitting an engaged state after a response), in
the distribution of food-reinforced VI IRTs. In
contrast, prior data suggest that appending a
tandem FR requirement at the end of the VI
schedule, which increases the response re-
quirement without substantially affecting rate
of reinforcement, mainly increases within-bout
response rates and not bout-initiation rates
(Shull et al.,, 2001, 2004; Shull & Grimes,
2003). Accordingly, we anticipated that the
tandem FR requirement would increase w,
possibly decrease ¢, and would not influence b.
Skjoldager, Pierre and Mittleman’s (1993)
study provides the most relevant precedent to
the motoric manipulation implemented in the
present study. They found that increasing the
lever height and force requirement prolongs
preratio pauses (i.e., reduces rates of engage-
ment) and reduces run rates in a progressive
ratio schedule. It is unclear, however, the extent
to which the latter effect might have resulted
from the longer time it takes to complete more
effortful responses, which is reflected in the
refractory period 6 following each response. We
thus anticipated that raising the lever and
increasing its force requirement would de-
crease b, increase 6, and possibly decrease w.

METHOD
Subjects

Six Sprague Dawley rats (Rattus norvegicus,
designated 505, 507, 517, 519, 520, and 521)
naive to operant conditioning experimenta-
tion served as subjects. They were approxi-
mately 90 days old and weighed about 350 g at
the start of the study. They were housed
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individually on a 12:12 hr reverse light/dark
cycle with lights on at 1900 hr, and had free
access to food and water in their home cage,
unless noted otherwise.

Apparatus

Two experimental chambers (305 mm long,
241 mm wide, and 210 mm high) housed in
light-and sound-attenuating compartments were
used. The front and rear walls and the ceiling of
each experimental chamber were made of clear
plastic; the front wall was hinged and functioned
as a door to the chamber. The floor consisted of
thin metal bars positioned above a catch pan. In
the horizontal middle of a side wall (perpendic-
ular to the front and rear walls) was a square
aperture (51 mm sides, 15 mm from the
chamber floor) to the receptacle for 45-mg
sucrose pellets (dustless precision formula
F0042; Bio-Serv, Frenchtown, NJ). The chambers
were equipped with two retractable levers (MED
associates, ENV-112CM) mounted flanking the
access to the pelletreceptacle. The inside edge of
each lever was 8 mm from the closest vertical
edge of the receptacle.

One lever (the “low’ lever) was located
21 mm above the floor; the other lever (the
“high” lever) was 165 mm above the floor and
16 mm below the ceiling. Rats could press the
low lever but not the high lever without
rearing. Force activation requirements for the
low and high lever were 0.05 N and 0.78 N,
respectively, except during autoshaping. Force
requirements were measured from the tip of
the lever using a stylus force gauge and
manipulated by adjusting the spring tension
of each lever. Henceforth the high height/
force lever will be referred to as the high
workload lever and the low height/force lever
will be referred to as the low workload lever. The
assignment of high versus low workload to the
lever closest to the door was counterbalanced
across chambers and remained fixed for the
duration of the experiment. Extraneous noise
was masked by a ventilation fan in each
chamber. There was no illumination in the
chambers during sessions. Data collection and
exgrerimental events were handled by MED-
PC™ software and hardware.

Procedure

Magazine training and autoshaping. Each sub-
ject completed one session of magazine train-

ing, in which 60 sucrose pellets were deli-
vered, response-independently, 1 every 60 s.
At the end of the training session, it was
verified that all rats ate all of the pellets. Nine
sessions of autoshaping were then conducted.
Each autoshaping trial started with the exten-
sion of a lever, which was retracted after 8 s or a
lever press, whichever happened first; lever
retraction was followed by the delivery of one
pellet. The intertrial interval (ITI) was 48 s.
During autoshaping, both levers were set at the
“low” height; lever force activation require-
ments were both set at 0.15 N. For all other
phases of the experiment the lever work
requirements were as described in the appara-
tus section.

Phase 1: Maintenance. Daily experimental
sessions were conducted following the auto-
shaping phase. Each session began with a 5-
min acclimation period in which no experi-
mental events occurred. The remainder of the
session was divided into trials, each signaled by
the extension of only one of the two levers.
The lever closest to the chamber door was
always extended for the first trial of each
session. The extended lever (high or low) was
strictly alternated between trials. Each trial
ended and the lever was retracted when a
sucrose pellet was delivered or when 300 s had
elapsed since the start of the trial, whichever
occurred first. Trials were separated by a 15-s
ITI during which both levers were retracted.

All experimental sessions lasted for 1 hr or
60 trials, whichever occurred first. Sessions
ended only after the end of a trial, never
during. Sessions were conducted 7 days a
week.

Table 1 lists the experimental conditions in
the order in which they were presented. Each
condition is identified by the schedule on
which pellet deliveries were programmed.
During continuous reinforcement (FR 1),
pellets were contingent on a single lever press.
During VI schedules, pellets were contingent
on the first lever press following an unsignaled
interval that was randomly sampled without
replacement from a flat 48-item distribution of
intervals, which had a mean of the stipulated
VI duration and ranged between 5 and 240 s.
The tandem variable-time (VT) 120 s fixed-
ratio 5 (tandem VT 120-s FR 5) schedule was
similar to a simple VI 120-s schedule, but
pellets were contingent on the fifth lever press
following the interval.
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Table 1

Number of sessions in training and experimental
conditions, arranged in chronological order.

Schedule of Reinforcement Sessions

Phase 1
FR 1 1
VI5s 1
VI 10 s 1
VI 20 s 1
VI 30 s 11
VI 120 s 20
Tandem VT 120-s FR 5 27

Tandem VT 120-s FR 5 with food deprivation 1

Phase 2

Tandem VT 120-s FR 5 7
Extinction 1

Acute food deprivation was instated imme-
diately after the 27" tandem VT 120-s FR 5
session. Chow was removed from the rats’
homecage for 24 hr (= 1 hr). One session was
conducted on the tandem VT 120-s FR 5 s
schedule under food deprivation. Food depri-
vation was terminated immediately after this
session to minimize the possibility of chronic
food-restriction effects on operant perfor-
mance (Epstein, Leddy, Temple & Faith,
2007).

Phase 2: Extinction. Performance was restabi-
lized on the tandem VT 120-s FR 5 schedule
for seven sessions, after which one extinction
session was conducted. During extinction, only
the lever closest to the door was extended after
the initial acclimation period; it remained
extended for the entire session, with no
consequential pellet delivery. The extended
lever (high or low workload) was counterbal-
anced across rats, with 3 rats exposed to each
lever.

Data Analysis

Statistical analyses of overall response rates
and parameters of the quantitative model were
conducted using a within-subject 2 X 3
(workload X condition) ANOVA. The two
levels of the workload factor were low and high
workload. The three levels of the condition
factor were VI 120 s (VI), tandem VT 120-s FR
5 without food deprivation (7andem), and
tandem VT 120-s FR 5 with food deprivation
(Food Dep). Dependent measures for each level
of the condition factor were the average of the
last 4 VI sessions, the average of the last 4

Tandem sessions, and the only Food Dep session.
Because the condition factor was a within-
subject factor with more than two levels,
Mauchly’s test of sphericity of the covariance
matrix (Mauchly, 1940) was applied. This test
verified the homogeneity of variance of the
difference scores because violating variance
homogeneity can inflate Type I error rates
(Myers & Well, 1995). For terms that violated
the sphericity assumption, their degrees of
freedom were reduced using the Huynh-Feldt
epsilon (Huynh & Feldt, 1970), which coun-
tered Type I error rate inflation. When the 2 X
3 ANOVA revealed significant main effects or
interactions, paired-samples ttests (pairing
within-subject) were conducted on compari-
sons of interest. More specifically, when an
effect involving the condition factor was found
to be significant, follow-up paired-samples
t-tests were conducted only between VI versus
Tandem (to assess the effect of the tandem
ratio requirement) and Tandem versus Food Dep
(to assess the effect of food deprivation), and
not between VI and Food Dep. The times at
which responses were emitted during the
single extinction session were also collected,
but no between-subject statistical inferences
were made.

RESULTS PHASE 1: MAINTENANCE
Reinforcement and Response Rate

Panel A in Figure 2 shows daily mean
reinforcement rates on both low and high
workload levers for each manipulation. Panel
B in Figure 2 shows the mean reinforcement
rates averaged over the last four training
sessions in the VI and Tandem manipulations
and the mean reinforcement rates from the
single Food Dep manipulation. Reinforcement
rate did not appear to be affected by either
workload or condition: ANOVA failed to
detect a main effect of workload, F(1, 5) =
1.74, p > .20, condition, F < 1, NS, or a
workload X condition interaction, F < 1, NS.
This indicates that our schedule successfully
controlled for reinforcement rates on both
levers across schedule/deprivation manipula-
tions.

Panel C in Figure 2 shows daily mean
response rates during VI, Tandem, and Food
Dep sessions. Panel D in Figure 2 shows mean
response rates averaged over the last four V/
and Tandem sessions and the mean response
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Fig. 2. Mean (= SEM) reinforcement rate (Panels A and B) and overall response rate (Panels C and D) for
experimental conditions in Phase 1. Left panels show daily means for low and high workload levers. Right panels show
means averaged over the last four sessions for VI and Tandem condition and the mean for the single Food Dep session.
Asterisks indicate significant (p < .05) effects of condition (schedule/deprivation manipulations).

rates from the single Food Dep session for each
lever. ANOVA found no significant condition
X workload interaction effect on response
rates, FF < 1, NS. ANOVA also found no
systematic differences between response rates
on the high versus low workload lever (main
effect of workload, F < 1, NS). In contrast,
ANOVA found a main effect of condition, F(2,
10) 18.55, p < .01. A follow-up ¢ttest
comparing VI versus Tandem found that
subjects responded more during the Tandem
condition than during the VI condition, #(5) =
3.85, p < .02 (left asterisk in Figure 2D). A
second follow-up #test comparing Tandem
versus f'ood Dep found that rats also responded
more during Food Dep than during Tandem,
(5) = 3.87, p < .02 (right asterisk in
Figure 2D), in agreement with the hypothesis
that motivation is enhanced by increased food
deprivation.

Model Selection

Although statistical analysis suggested that
response rate was not affected by workload,
variability in performance between and within
subjects may have obscured systematic changes
in more fine-grained parameters that underlie

overall response rates. We further explored
this possibility by considering four variations of
a model of IRT distributions (Equation 2,
Figure 1): a single-exponential model, where ¢
= 0 and 8 = 0; a refractory exponential model,
where ¢ = 0 but 6 = 0; a bi-exponential model,
where ¢ = 0 but 8 = 0 (Equation 1), and a
refractory bi-exponential model, where ¢ = 0
but 6 = 0 (Equation 2).

We fitted each model to each rat’s daily
IRT data on each lever, using the method of
maximum likelihood (Myung, 2003). The
maximum likelihood estimate (MLE) of each
model was the product of the model’s daily
likelihood estimates across levers and sub-
jects. Akaike Information Criterion (AIG;
Burnham & Anderson, 2002; see Appendix
A for a brief explanation of the maxi-
mum likelihood method, AIC, and AAIC)
was then used to evaluate the relative
goodness of fit of each model. In the present
experiment, a trial occasionally timed out
before the animal had earned a reinforcer,
thus yielding periods that ended without a
response. Appendix B provides the expres-
sion for the probability that the animal
does not emit a response for a given duration
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Table 2

Minimum daily AAIC for each of four models of operant performance, for each experimental

condition in Phase 1.

Model Tandem Food Dep
Single exponential (w) 3377 6239 25497
Refractory exponential (w, 6) 2836 5771 22744
Bi-exponential (¢, w, b) 1097 1700 9622
Refractory bi-exponential (¢, w, b, 5) 0 0 0

Note. Computation of AAIC is explained in Appendix A. Free parameters are indicated in parenthesis following model
names. Note that the food deprivation condition consisted of only a single session.

for the most general model (i.e., refractory
bi-exponential). Parameters were estimated
for each of the four models, for each animal,
in each experimental condition, based on
the joint probability of all IRTs and the “‘no-
response’’ periods.

Table 2 shows the minimum AAIC across
daily sessions under each condition for each
model. The refractory bi-exponential model
(Equation 2) was consistently the best model
on every training session. The finding that the
next smallest AAIC across all sessions was 1097
means that the refractory bi-exponential mod-
el was at least ¢’ times more likely than the
next best model (nonrefractory bi-exponential
model) on any given day.

To illustrate the goodness of fit of the
selected model, Figure 3 shows log survival
plots of IRTs (continuous curves) of a typical
rat across experimental conditions, along with
fitted refractory exponential (dotted) and
refractory bi-exponential (dashed) traces. All
plots took the approximate shape of a broken
stick: Many IRTs were very short (steep portion
of the curve on the left side of each plot); the
longer IRTs ranged over much longer intervals
(flatter portion of the curve on the right side
of each plot). The refractory bi-exponential
model fitted the data adequately, and certainly
better than the single exponential model. The
fitted nonrefractory bi-exponential trace (not
shown) was almost identical to the refractory
bi-exponential trace, except that the former
was shifted to the left by 0.1 s. The similarity of
both traces highlights the advantage of using a
likelihood-based analysis: AIC clearly showed
that the inclusion of the refractory period
provided a better description of the data. This
advantage would have been missed by both
visual inspection of the survival function and
by fitting a curve to the function using the

method of least squares (Kessel & Lucke,
2008).

Effects on Parameter Estimates

To assess the effect of workload, schedule of
reinforcement, and food deprivation on re-
fractory bi-exponential parameters, we com-
pared estimates of these parameters' across
experimental manipulations. This comparison
was based on the same 2 X 3 (workload X
condition) ANOVA used to analyze overall
response rates. The two levels in the workload
factors were low and high workload, and the
three levels in the condition factor were VI,
Tandem, and Food Deprivation (Food Dep).
Because our model assumed that each param-
eter was independent from one another, a
separate ANOVA was conducted for each
parameter. Estimates for individual rats are
shown in Appendix C.

Panels A and B in Figure 4 show the
probability of quitting a bout, ¢, for each of
the two levers. ANOVA found no workload X
condition interaction effect on ¢, I/ < 1, NS.

! There were occasional sessions in which one animal did
not emit boutlike responding—specifically rat 520 on three
sessions and rat 519 on one session under the VI condition.
On these sessions, these rats’ AIC scores from the refractory
single exponential model were the lowest. This was because
the estimates for ¢ using the bi-exponential model were so
close to zero that the parameter & did not account for
enough variance to justify its inclusion. This means that the
estimates of b were based on few responses and were thus
unreliable. On these sessions, we therefore used the
refractory single exponential model for these animals, with
g = 0, and b for these animals was not estimated. On
another two sessions under the Tandem condition, rat 520
emitted only one response on the high workload lever. We
therefore omitted to analyze this rat’s IRT data from the
high workload lever entirely on these two sessions. None of
the above atypical responding occurred during the last four
sessions in each condition, on which statistical analyses were
based.
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Fig. 3. Log survival plots of IRTs produced by a representative rat in all experimental conditions of Phase 1
(continuous curves). Left and right panels show data from low and high workload levers, respectively. The maximum
likelihood fits of the refractory single exponential (Ex) and bi-exponential (Bi-ex) models are also shown. The best fitting
parameters for the two models are displayed in each graph. ¢: proportion of IRTs separating bouts; w (responses/sec):
within-bout response rate; b (responses/sec): bout-initiation rate; § (sec): refractory period. The rat was selected by
ranking the overall response rate on each lever in the last session of each condition in Phase 1 for each rat, then
averaging the rank across levers and conditions, and selecting the rat with the third highest average rank.
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Fig. 4. Mean (= SEM) bi-exponential model parameters: probability of quitting a bout, ¢ (Panels A and B); the
refractory period, & (Panels C and D); within-bout response rate, w (Panels E and F); and bout initiation rate, b (Panels G
and H). Left panels show daily means for low and high workload levers. Right panels show means averaged over the last
four sessions for VIand Tandem condition and the mean for the single Food Dep session. Asterisks indicate significant (p <
.05) effects of condition (schedule/deprivation). Pound signs indicate significant effects of workload.
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Changing motor workload had no significant
effect on ¢ [main effect of workload: F(1, 5) =
1.07, p > .30]. In contrast, ANOVA found that
g was significantly affected by condition [main
effect of condition: F(1.0, 5.1) = 19.64, p <.
01]. A follow-up ttest comparing VI versus
Tandem found that increasing ratio require-
ment reduced ¢ on both levers, {(5) = 4.54, p
< .01, (asterisk in Figure 4B). A second follow-
up ttest comparing Tandem versus Food Dep
found that food deprivation did not affect ¢
significantly, #(5) = 1.63, p > .10.

Panels C and D in Figure 4 show mean
estimates of the refractory period, §, for each
of the two levers. On average, § was systemat-
ically higher for the high versus the low
workload lever, although the difference was
small (pooled average difference = 0.033 =
0.009 s)?. ANOVA found no workload X
condition interaction effect on 9, F(1.1, 5.3)
= 1.96, p > .20, but it found a significant
main effect of workload, F(1, 5) = 15.38,
p < .02 (pound sign in Figure 4D), showing
that increasing motor workload increased 9,
as predicted. The main effect of condition
on 6 was not significant, /(1.1, 5.3) = 3.12,
p > .10.

Panels E and F in Figure 4 show mean
estimates of the within-bout response rate, w,

2Our estimate of § carries a slight bias. This is because
maximum likelihood is achieved when 6 is as large as
possible, i.e., at the minimum IRT. However, if X is an
exponentially distributed random variable with rate b and
no refractory period (8 = 0), and if we take n independent
samples from X (e.g., n IRTs from a subject), then
min{Xj,..., X,} will also be exponentially distributed with
mean 1/nb (Ross, 2007). Similarly, given a bi-exponential
distribution with no refractory period, if we take (I—¢)n
samples from the exponential distribution with rate w and
gn samples from the other exponential distribution with
rate b, then we expect the minimum to be exponentially
distributed with mean 1/[(I—¢q) nw+qnb]. This is therefore
our bias when we use the minimum IRT as our estimate for
d in the refractory bi-exponential model. We took bi-
exponential parameter estimates from the last four
sessions under the VI and Tandem conditions and from
the single Food Dep session, and substituted them into the
equation 1/[(I—¢q)nw+gnb], where n is the number of
responses emitted by the animal. The average bias pooled
across conditions and levers was 0.005 = 0.003 s, and there
was no substantial difference between the biases on the
two levers (0.002 = 0.002 s). The bias was only ~4% of the
average estimate for § (i.e., minimum IRT; 0.11 * 0.01 s)
and was also much smaller than the average difference in &
between the high and low workload levers (0.033 =
0.009 s). Therefore the bias in the present study was too
small to affect any of the findings, and was consequently
ignored.

for the two levers. ANOVA found no signifi-
cant workload X condition interaction effect
on w, I'<< 1, NS. ANOVA found that the main
effect of workload was not significant at the .05
level, F(1, 5) = 4.50, p > .08, even though
differences in mean w between workloads may
hint that high workloads maintained higher w.
ANOVA found a significant main effect of
condition on w, F(2, 10) = 9.45, p < .01. A
follow-up ttest comparing VI versus Tandem
found that w increased when ratio require-
ment was increased, #(5) = 4.49, p < .01
(asterisk in Figure 4F). A second follow-up
ttest comparing Tandem versus Food Dep found
that food deprivation did not affect w, ¢(5) =
0.92, p > .35.

Panels G and H in Figure 4 show mean
estimates of the bout initiation rate, b, for the
two levers. ANOVA found no significant
workload X condition interaction effect on b,
F < 1, NS. ANOVA found a significant main
effect of workload on 4, F(1, 5) = 19.83, p <
.01, with b being lower on the high workload
lever (pound sign in Figure 4H). ANOVA also
found a marginally significant main effect of
condition at the .055 level, (1.2, 6.0) = 5.48, p
= .054. A follow-up ttest comparing VI versus
Tandem found that b was significantly lower
under the Tandem condition, ¢(5) = 3.40, p <
.02 (left asterisk in Figure 4H), suggesting that
animals initiated response-bouts less frequent-
ly on both levers after ratio requirement
increased. A second follow-up #test comparing
Tandem versus IFood Dep found that b was
increased by food deprivation, #(5) = 3.19, p
< .03 (right asterisk in Figure 4H), in agree-
ment with the hypothesis that food deprivation
enhances motivation.

DISCUSSION PHASE 1: MAINTENANCE

A superficial examination of response rate
alone indicated that responding on a VI
schedule increases if the tandem ratio require-
ment increases, or if the animals are deprived
of food (Figure 2, Panel C and D). Both
effects, under conditions of constant rate of
reinforcement (Figure 2, Panel A and B), are
replications of well-demonstrated phenomena
(Ferster & Skinner, 1957; Skinner 1938,/1991;
Shull et al., 2001). Interestingly, no effect of
workload on overall response rate was detect-
ed. This result is inconsistent with many
reports indicating an inverse relationship
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between force requirements and response rate
(Adair & Wright, 1976; Alling & Poling, 1995;
Bradshaw, Szabadi & Ruddle, 1983; Chung,
1965; Posadas-Sanchez, 2005), although sup-
port for this relationship is not unequivocal
(Collier & Jennings, 1969; Elsmore & Brown-
stein, 1968; Stanley & Aamodt, 1954; Zarcone,
Chen & Fowler, 2007, 2009). Nonetheless,
overall response rate is a crude measure of
performance: By collapsing all the IRTs into
the denominator, response rates neglect the
information contained in the distribution of
IRTs. We suspected that changes in IRT
distribution across conditions would uncover
interesting effects, including those produced
by changes in workload.

Our first task was to determine the most
appropriate characterization of IRT distribu-
tions. We thus considered four models, three
of which were simplified versions nested within
a fourth, more complex model—the refractory
bi-exponential model (Equation 2). The com-
plexity of this model was well justified by the
variance it accounted for and, therefore, it was
adopted. The refractory bi-exponential model
assumes that responses occur in bouts; it
consists of four parameters: ¢ (the probability
of quitting a response bout; its complement,
1— ¢, is the probability of continuing in a
bout), & (the minimum IRT), w (the rate of
responding within a bout), and b (the rate of
bout initiation).

Finally, we identified substantial changes in
refractory bi-exponential parameters caused by
changes in experimental conditions. Consis-
tent with Shull et al. (2001), we found that the
tandem VT FR schedule maintained higher
response rates than the simpler VI schedule
because it sustained longer bouts of fast
responding (lower ¢, higher w), even though
these bouts were less frequent (lower b). Food
deprivation selectively increased bout frequen-
cy, thus yielding even higher response rates;
this also replicated Shull’s (2004) findings. We
also found that mean response rates obscured
three mutually compensating effects of work-
load: Higher workloads yielded less frequent
bouts (lower b) of responses that took longer
to complete (higher §), but that tended to be
emitted at higher rates (higher w). Although
not statistically significant, the workload-in-
duced change in wwas sufficient to counteract
the depressing influence of 4 and § on overall
response rate.

Among the factors considered in this study,
changes in schedule of reinforcement affected
only the probability of staying on the lever (1—
¢) and the rate of within-bout responding (w),
whereas workload uniquely affected the min-
imum IRT (8). Thus, evidence presented here
supports the use of ¢ and w as indices of
schedule effects, and 6 as an index of motoric
effects in food-maintained behavior. Motiva-
tional effects, such as those of food depriva-
tion, may be identified by exclusive changes in
the rate of bout initiation 4. This means that
changes in b that are accompanied by changes
in other parameters may be caused by non-
motivational manipulations. As shown in Fig-
ure 4 Panel H, a schedule manipulation
(tandem FR requirement) and a motoric
challenge (higher workload lever) vyielded
reductions in b. These nonmotivational ma-
nipulations also influenced other parameters;
only food deprivation influenced b alone.

RESULTS PHASE 2: EXTINCTION

Figure 5 shows, in separate plots for low and
high workload, the cumulative lever presses
emitted by individual rats and the time when
half of those lever presses were emitted during
the extinction session. On average, fewer
responses appear to be emitted during the
extinction of high workload lever pressing,
although the variability between subjects pre-
cludes any meaningful statistical analysis. In
contrast, the rate at which responding decayed
during extinction, indexed by the halflife of
the cumulative response, was similar across
workload levels. As in Phase 1, we anticipated
that the analysis of response aggregates pro-
vided no more than a general semblance of
the extinction process. We thus applied the
modeling exercise from Phase 1 to the data
from Phase 2.

Because the exponential model is a special
case of the bi-exponential model, we focused
on generalizing the latter model to extinction
performance. Like the maintenance model,
the extinction model assumes that responses
occur stochastically and independently accord-
ing to two underlying independent Poisson
processes—one with high rate (within-bout)
and one with low rate (bout initiation). It is
assumed that, during an extinction session,
one or more of the following parameters decay
exponentially towards zero over time: the
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Fig. 5. Cumulative lever presses emitted during extinction on the low and high workload levers for individual rats.
Vertical drop lines indicate the time at which each subject emitted half of its total lever presses in the extinction session.

Rat numbers are indicated at the end point of each record.

probability of remaining in a bout (1 — ¢), the
within-bout response rate (w), and the bout-
initiation rate (4). The decay of any one of
these parameters would yield longer IRTs, and
thus reduced response rates, as a function of
time in extinction. The nomination of these
decay processes is not motivated by theoretical
considerations, but provides reasonable de-
scriptions of the extinction process, given the
refractory bi-exponential model.

Specifically, let (I — g¢¢) be the baseline
probability of remaining in the engaged state
at the beginning of the extinction session, wy
be the baseline within-bout response rate, and
b be the baseline bout-initiation rate. Let 1 —
¢, be the probability of quitting the engaged
state at time {into the extinction session, w, be
the within-bout response rate at time ¢into the
session, and b, be the bout initiation rate at
time ¢ into the session. Then:

't

I—g=(—q)e’

w=wpe ™ B>a

(3)
by=bye P

where v, o, and P are the rates of decay of (1 —
qo), wy, and by respectively. The probability of
quitting a bout at time ¢, ¢, is simply 1 — (1 —
q,)- Note that the exponential function is used
in Equation 3 to describe the decay of
parameters as a function of time in extinction,
and not to describe the probability distribu-
tion of IRTs (cf. Equations 1-2). For simplicity,
we assume that if a rat responded at time ¢and
the next response occurs at ¢ + d, then the
parameters ¢, w,;and b, are given by Equation 3
and they remain constant between ¢ and ¢+ d.

Appendix D provides expressions for the
probability that the animal does not emit a
response between its last emitted response and
the end of the session. Parameters were
estimated for each animal in each experimen-
tal condition, based on the joint probability of
all IRTs and the ‘“‘no-response’ periods.

Because parameters ¢, w, and b change as a
function of time in extinction, we call this
model the dynamic refractory bi-exponential model,
in contradistinction to the static model of
Equation 2. Note that if all three decayrate
parameters (v, o, B) are set to zero, the model
reduces to Equation 2. Table 3 lists all the
parameters of both static and dynamic refrac-
tory bi-exponential models with their mean-
ing, for reference.

We had no a priori hypothesis as to which of
the parameters, (1—q), wy, or by, would decay
during the extinction session. We therefore
used maximum-likelihood estimates and AIC
to determine the most efficient model. The
following models were compared using AIC:
(a) single versus bi-exponential (¢, = 0vs. gy =
0); (b) nonrefractory versus refractory (6 = 0
vs. 6 = 0); and (c) all possible combinations of
decay rate parameters (y, o, and PB) fixed at
zero versus not fixed at zero. Models with
parameters fixed at zero are more parsimoni-
ous and are analogous to the null hypothesis
that those parameters are superfluous (Burn-
ham & Anderson, 2002). The AIC scores for
these ‘“‘null”’ models would be lower, and
hence these models would be favored, if
alternative models that allow these parameters
to be free did not account for substantially
more variance. There are a total of four single
exponential candidate models: two models
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Table 3

List of parameters for the static and dynamic models.

Static models

3 Refractory period

q Probability of quitting a bout
w Within-bout response rate

b Bout-initiation rate

Dynamic models

3 Refractory period

I1=qo Baseline probability of remaining in bout
wy Baseline within-bout response rate

b Baseline bout-initiation rate

Y Rate of decay of I—q,

o Rate of decay of w,

B Rate of decay of by

with o either free or fixed at zero X two
models with & either free or fixed at zero.
There are a total of 16 bi-exponential candi-
date models: 2° models with v, o, and B, each
either being free or fixed at zero, and for each
bi-exponential model § can be free or fixed at
zero, yielding 2° X 2 = 16 candidate models.
Animals were grouped according to which
lever was presented during the extinction
session (high vs. low workload); model selec-
tion and parameter estimation were conduct-
ed for each group separately.

AIC analysis showed that the refractory bi-
exponential model fitted extinction data bet-
ter than both single exponential models and
the nonrefractory bi-exponential model. Ta-
ble 4 shows the five best fitting models for
extinction of high versus low workload lever
pressing, as well as the best fitting nonrefrac-
tory bi-exponential model and the best fitting
single exponential model. Model names indi-
cate whether the model is refractory (4 is free)

29

and the decay rate parameters that are allowed
to vary freely. Each model’s AAIC is shown in
parentheses. The best fitting refractory bi-
exponential models were more than ¢’” times
more likely than the best nonrefractory bi-
exponential model, which was in turn more
than ¢”? times more likely than the best
fitting single exponential model. This provides
strong evidence that boutlike responding
occurs during extinction, justifying the present
fine-grained analysis. The likelihood of each of
the top four models for both groups (extin-
guished on low vs. high workload levers) is
fairly similar to each other. In fact, § was the
only decay rate parameter that the present
data unequivocally suggested needed to be
free: For both groups of animals, the best
models with B set to zero (ranked fifth in
Table 4) were more than ¢’® times less likely
than a similar models with 3 allowed to be free,
providing strong evidence that bout-initiation
rate declined as extinction progressed. Table 4
also shows that models with y or o set to zero
(ranked second) had low AAICs. The present
data therefore did not provide substantial
evidence that the probability of remaining in
a bout or the within-bout response rate
declined during an extinction session (for
model selection criteria, see Appendix A). The
model ranked second, underlined in Table 4,
was therefore selected as best balancing
parsimony and goodness-of-fit.

Figure 6 shows how IRTs (pauses between
responses) changed as a function of time in
extinction. The x-coordinate of each point is
the time ¢ when a response was emitted; the y-
coordinate shows how long the animal waited
until emitting the next response. Note that the
y-axis is plotted on a log scale. Also shown are

Table 4

Best extinction models according to AIC.

Model rank Low workload (AAIC) High workload (AAIC)
1 3, o, B (0) 3, o, B (0)
2 3, B (0) 3, B (1)
3 3, v, B (2) 3, v, o, B (5)
4 3, v, 0, B (2) 3, v, B (5)
5 3, v (250) d (121)
Best nonrefractory bi-exp B (2829) B (1483)
Best single exp S, o (12771) 3, o (8736)

Note. Free parameters are listed for each model; 1— ¢y, wy, and &, were free to vary for all bi-exponential models (see
Equation 3). The best nonrefractory and single exponential models are listed for comparison. Selected models are

underlined (see Appendix A for explanation).
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Fig. 6. Interresponse times (IRTs) as a function of time ¢ in extinction. The broken, solid, and dotted lines are,
respectively, traces of average bout initiation IRT (1/4,), average within-bout IRT (1/w,), and constant minimum IRT (3),
drawn from the dynamic refractory bi-exponential model selected in Table 4 and fitted using the maximum likelihood
method. Traces of 1/4, have been joined by a smooth straight line for illustrative purposes (see main text).
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Table 5

Group mean parameter estimates (=SEMs) of extinction
performance from the selected model, which fixed y and o
at zero (Model 2 in Table 3).

Parameter Low workload High workload
qo 0.11 = 0.02 0.12 = 0.00
S (s) 0.073 = 0.003 0.083 = 0.009
wy (responses/s) 5.99 = 1.36 471 = 0.91
by (responses/s) 0.19 = 0.02 0.09 = 0.04
B (X107 %/s) 1.21 = 0.46 0.71 = 0.20

the fitted mean IRTs drawn from the dynamic
refractory exponential model selected in Ta-
ble 4—solid lines represent within-bout IRTSs
(0 + 1/w,) and broken lines represent be-
tween-bout IRTs (6 +1/b,). Note that although
the selected dynamic model assumes that b,
remains constant (flat) between consecutive
responses and only increases in discrete
“jumps”’, the mean IRTs in Figure 6 have
been joined by a smooth straight line for
illustrative purposes. Figure 6 clearly shows
clusters of rapid within-bout responses with
mean IRT of about 0.3 s, intermixed with
much slower boutinitiation responses with
mean IRT of about 10 s at the beginning
of the extinction session, and rising exponen-
tially to about 100 s by the end of the session.
Rat 519 ceased responding completely at
about 1500 s into the session; all other rats
showed a more gradual decline in bout-
mitiation rate.

The group mean parameter estimates
(=SEMs) of model 2 (Table 4) for each group
are presented in Table 5. Due to the small
group size (n = 3), statistical analysis was not
conducted on parameter estimates. Nonethe-
less, there are some noteworthy qualitative
inconsistencies and regularities in parameter
estimates. The difference in w, across work-
loads was not in the same direction as observed
during Phase 1. As the statistical analysis
suggested in Phase 1, workload-induced
changes in within-bout response rate do not
appear reliable. The differences in b, and §
across workloads, nonetheless, are consistent
with the differences observed during Phase 1,
thus confirming that higher workload yields
fewer bouts of prolonged responses. Absent
reinforcement, bouts of more laborious re-
sponses do not appear to decline faster in
frequency.

DISCUSSION PHASE 2: EXTINCTION

The present experiment complements a
previous study by Shull et al. (2002). In their
study, extinction sessions were separated into
blocks of approximately 20 min, with the
assumption that model parameters are con-
stant within a block. Then, two separate
analyses were conducted to estimate model
parameters for each block, and changes in
parameters as a function of block (time in
extinction) were visually compared. The first
analysis used log survival plots to fit parameters
for each block. However, the authors noted
that this method was problematic because the
number of IRTs per block became increasingly
small, which reduced the reliability of param-
eter estimates in the later blocks. The second
technique imposed an arbitrary cutoff-IRT. All
IRTs shorter than the cutoff were classified as
within-bout, and all IRTs longer than the
cutoff were classified as between-bout. Al-
though Shull and colleagues used this method
without any reported issues, the selection of
the cutoff-IRT has the potential to misclassify
pauses between bouts as within-bout IRTs, and
vice versa. The present study circumvented
these difficulties by generalizing the response-
bout model so that any dynamic changes in
steady-state parameters can be captured quan-
titatively. This generalization not only allows
parameters to be estimated for individual
subjects on a sound theoretical basis, it also
has the potential to allow different hypotheses
to be explicitly tested using AIC, such as which
of the steady-state parameters (g, w, or b)
change during extinction. The results from
the present extinction experiment supported a
relatively simple extension of the static refrac-
tory bi-exponential model: when reinforce-
ment is discontinued, only the rate of bout
initiation declines exponentially over time.
Research elsewhere has shown similar effects
of extinction on bout initiation, although
small decrements in bout length were also
reported (Shull et al., 2002; Podlesnik, Jime-
nez-Gomez, Ward, & Shahan, 2006).

Overall, these findings are consistent with
reports of selective effects of rate of reinforce-
ment on rate of bout initiation (Johnson,
Pesek, & Newland, 2009; Shull et al., 2001).
The evidence supports the notion that rein-
forcement operates primarily on the initiation
of response bouts (Heyman, 1988), although
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other studies have shown variations in bout
length (Shull et al., 2004) and within-bout
response rate (Conover et al., 2001) with rate
of reinforcement. The constancy of within-
bout ‘“‘tempo’’, for instance, is particularly
salient in the flat solid lines of Figure 6. As
discussed in Phase 1, however, bout initiation
appears to be sensitive also to workload and
schedule demands. It is yet unclear whether
the workload manipulation implemented in
this study influenced the rate at which bout
initiation declines during extinction.

GENERAL DISCUSSION

Our results support the notion that free
operant responding under VI schedules is
organized in bouts separated by pauses. We
effectively extended this notion to characterize
extinction as an exponential lengthening of
the pauses that separate bouts, which is
consistent with prior findings (Podlesnik et
al.,, 2006; Shull et al., 2002). Although we
considered two models to account for mainte-
nance and extinction performance (the static
and dynamic models, respectively), both mod-
els may be special cases of a more compre-
hensive model. In this more general model,
operant performance may be characterized as
a propensity to initiate response bouts, which
increases with reinforcement and declines with
time. Alternatively, the decline in bout-initia-
tion may be driven by unreinforced responses,
in line with Skinner’s (1938/1991) notion of
reflex reserve (Catania, 2005). More precisely,
the model of boutinitiation decline consid-
ered in this study was a hybrid of the time-
dependent and response-dependent decline
models: We assumed that bout initiations
decline as time without reinforcement prog-
ress, but the hypothesized clock was only
updated with each response. Further research
may clarify how the initiation of bouts declines
in the absence of reinforcement. We also
extended the bi-exponential model to include
a refractory period following each response,
and demonstrated that it is an informative
component of operant performance.

Although the refractory bi-exponential mod-
el was capable of describing food-reinforced
behavior in rats, it may be somewhat limited in
describing the behavior of other species.
Pigeon key-pecking has been notoriously
resistant to bout-and-pause analyses. Visual

inspection of log survival plots of key-pecking
IRTs often fail to reveal a distinct inflection
point (Bennett, Hughes & Pitts, 2007; Bowers,
Hill & Palya, 2008; Podlesnik et al., 2006). This
divergence in the performance of rats and
pigeons suggests that a more flexible model, of
which the refractory bi-exponential is a special
case, may be necessary to characterize operant
behavior across species.

Motoric Effects

When rats were required to press a higher,
heavier lever, bout-initiation rate declined
and the minimum time between consecutive
responses (the refractory period 8 in Equa-
tion 2) increased. Bout-initiation rate is also
sensitive to deprivation level and rate of
reinforcement (Shull, 2004; Shull et al.,
2004), but both were kept constant across
workload manipulations. Thus, it appears
that workload manipulations had an effect
similar to that of altering deprivation and rate
of reinforcement, aside from the more purely
motoric effect of lengthening of the refrac-
tory period. This is consistent with Posadas-
Sanchez’s (2005) finding that a higher lever
force requirement decreases indices of moti-
vation while increasing indices of response
duration. Skjoldager et al. (1993) reported
that an increase in lever height and force
requirement prolonged pre-ratio pauses and
reduced run rates in a progressive ratio
schedule. Alling and Poling (1995) replicated
these effects in fixed ratio schedules. Pre-
ratio pauses are akin to between-bout IRTs—
they indicate periods of disengagement from
the operandum, and are particularly attuned
to motivational manipulations such as those
of deprivation level (Malott, 1966). All this
evidence converges on the notion that chang-
es in response cost necessarily influence
motivation. Therefore motoric effects, which
are embedded within changes in run rates,
cannot be empirically isolated; they can only
be analytically isolated. That is, motoric
effects may not be observed without motiva-
tional changes, but they may be estimated on
the basis of changes in the shortest IRT. The
refractory bi-exponential model provides a
means for such estimation.

The hypothesis that motoric manipulations
imply motivational effects may explain some
weaknesses of extant methods of motor—
motivational dissociation. One popular meth-
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od, for instance, consists of estimating the
parameters of Herrnstein’s (1970) hyperbola
from performance across various VI schedules
(Bradshaw, Ruddle & Szabadi, 1981; Glautier,
Rigney & Wilner, 2001; Heyman, Kinzie &
Seiden, 1986). A common assumption, derived
from early interpretations of the hyperbolic
parameters (de Villiers & Herrnstein, 1976), is
that the asymptotic response rate k attained
with very high reinforcement rates should be
sensitive only to motoric manipulations,
whereas the rate of reinforcement 7, that yields
aresponse rate of k£ / 2 should only be sensitive
to motivational manipulations. A recent review
(Dallery & Soto, 2004) suggests that k is
sensitive to motoric manipulations, but not
selectively: It also appears to be sensitive to
changes in deprivation level and reinforcer
magnitude. In turn, 7, seems to be sensitive to
motoric manipulations under certain circum-
stances. Motivational effects inherent to mo-
toric manipulations may explain why 7, is
sensitive to motoric manipulations, but not
why k£ is sensitive to motivational manipula-
tions. A generalization of Herrnstein’s hyper-
bola (McDowell, 2005), similar to that provid-
ed by Baum (1974) for the matching law,
appears to account for motivational effects
otherwise absorbed by k. This may be a
productive development toward a global ac-
count of performance in VI schedules. Local
mechanisms similar to those suggested here,
however, are not specified by the generalized
hyperbola.

Schedule Effects

Rats emitted fewer response bouts when a
FR requirement was appended at the end of an
interval schedule. These bouts, however, were
longer and denser in responses (smaller g,
higher w), yielding higher overall response
rates. If overall response rate was taken as an
index of motivation, we would be deceived
into believing that the imposition of a tandem
FR schedule increased the motivation to
engage the operandum. The reduction in
bout-initiation rate suggests the contrary: The
tandem FR schedule reduced, not increased,
motivation. Why would a tandem FR schedule
reduce motivation? Longer bouts increase the
number of intervening responses between
boutinitiating lever presses and reinforce-
ment, and may widen the interval between
the two. It is widely acknowledged that delayed

reinforcement is less effective in maintaining
behavior (e.g., Dickinson, Watt & Griffiths,
1992). More directly relevant to our results,
pre-ratio pauses in FR schedules increase with
reinforcement delay (Meunier, Starratt &
Sergio, 1979; Morgan, 1972). Although the
ineffectiveness of delayed reinforcement has
a credit-assignment component (Lieberman,
McIntosh & Thomas, 1979), it is likely to
include also a motivational component: De-
layed incentives are less attractive than imme-
diate ones (e.g., Mazur, 2010). Bout initiation
rate may thus be reduced by tandem FR
schedules because these schedules yield longer
bouts that separate their initiation from
reinforcement. This explanation has a sig-
nificant implication: It suggests that, even
though the computer recording the rat’s
activity may count a boutinitiation lever
press just as any other lever press, these lever
presses are functionally distinct from within-
bout lever presses. Despite their topographical
similarity, bout-initiating responses and within-
bout responses may constitute separate re-
sponse classes (Schick, 1971). If such were the
case, reinforcement of the latter would not
completely generalize to the former, and vice
versa (see Shull et al., 2004, pp. 76-78, for a
related discussion on the bout as a behavioral
unit).

Our explanation of reduced bout-initiation
rates in tandem FR schedules is based on
longer bouts. Why, then, do tandem FR
schedules yield longer bouts? Probably be-
cause fast response bursts are more likely to be
reinforced under tandem VT FR than under
VI schedules (Killeen, 1969); schedules with a
terminal tandem FR requirement selectively
reinforce longer bursts. Interestingly, such
reinforcement did not appear to generalize
to bout-initiation lever presses in the present
study, supporting the notion that bout-initia-
tion and within-bout lever presses are func-
tionally distinct.

Like workload manipulations, schedule ma-
nipulations appear to have a motivational and
a nonmotivational component. The motiva-
tional component is related to the resulting
delay between bout initiation and reinforce-
ment. The nonmotivational component is
related to the proximity of within-bout re-
sponses to reinforcement. The refractory bi-
exponential model identifies changes in the
former component with changes in parameter
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b in Equation 2, and changes in the latter
component with changes in ¢ and w.

Motivational Effects

Food deprivation selectively increased bout-
initiation rate (Phase 1), whereas the elimina-
tion of reinforcement selectively reduced bout-
initiation rate (Phase 2). Similarly, Podlesnik et
al. (2006) found that prefeeding and extinction
reduced bout-initiation rate. The results report-
ed here complement the evidence that bout-
initiation rate selectively covaries with rate of
reinforcement (Shull et al., 2001). They suggest
that the rat’s willingness to engage the oper-
andum, which is driven by hunger, reinforcer
availability, and low “‘price”’, is expressed in the
rate of bout initiation (parameter bin Equation
2). Such general willingness may be described
as operant motivation, to distinguish it from the
more specific notion of incentive motivation
(Bindra, 1978).

Incentive motivation refers to the approach
or seeking behavior elicited by appetitive or
conditional stimuli. Incentive motivation is
mostly dependent on the properties of the
stimulus and on the state of the animal with
respect to the stimulus, and is independent of
response cost and the interval between re-
sponse and reinforcer. Operant motivation,
instead, is a function of both incentive and
response. Response cost may influence oper-
ant motivation, as shown by the effects of
motoric manipulations, and longer response—
reinforcer intervals are likely to reduce oper-
ant motivation, as inferred from the effects of
schedule manipulation and rate of reinforce-
ment. Incentive motivation for food, for
instance, may be raised by depriving an animal
of food or by presenting food (or associated
stimuli) to the animal; operant motivation for
engaging in food-producing activities may be
raised by increasing incentive motivation for
food, by reducing the energetic cost of the
activities that yield food, or by reducing the
time between activities and food. Because
incentive motivation is subsumed within oper-
ant motivation, changes in incentive motiva-
tion may be inferred from concomitant chang-
es in boutinitiation rate, but only when
response-reinforcement contingencies are
kept constant.

Researchers are often interested in drawing
inferences about changes in incentive motiva-
tion from operant performance. We may want
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to demonstrate, for instance, that a particular
treatment reduces the incentive motivation for
cocaine. One way to perform this demonstra-
tion is to compare operant performance for
cocaine (under maintenance or extinction
schedules) with and without the treatment.
Based on the results reported here, one would
be advised not to compare overall response
rates, but to compare estimates of the rate at
which response bouts are initiated. Even then,
because bout initiation is an indication of
operant, not incentive motivation, one would
have to rule out motoric and schedule effects
that would indirectly affect operant motiva-
tion. That is, if the test indicates that only
bout-initiation rates were affected by treat-
ment, it would constitute positive evidence
that the treatment reduced the incentive
motivation for cocaine, but if it also affected
the within-bout response rate or the minimum
IRT, reliable inferences on incentive motiva-
tion may not be drawn.

The previous example assumes that the
inferences we have drawn from food-seeking
behavior may be generalized to cocaine self-
administration. Whether such generalization is
justified or not will require further research
with a wider range of reinforcers (e.g., drugs,
access to mates, defense against aversive
stimuli) and a variety of operants. The present
study has laid out the empirical and analytical
methods to assess changes in the components
of operant performance, even when the
reinforcer is absent. We believe these methods
are critical to advance our understanding of
motivated behavior.
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APPENDIX A

MAXIMUM LIKELIHOOD METHOD AND AKAIKE INFOR-
MATION CRITERION (AIC)

The maximum likelihood method consists
of maximizing the probability of the data (i.e.,
the joint probability of all of the observed IRTs
and the observed ‘‘no-response’’ periods for
each individual rat in a session) given each
model, by adjusting model parameters. The
maximized probability is known as the maxi-
mum likelihood estimate (MLE). The Akaike
Information Criterion (AIC) is then used to
select between candidate models (Burnham &
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2009; Sanabria, Acosta, Killeen, Neisewander
& Bizo, 2008; Sanabria & Killeen, 2008). The
AIC for a model is computed as AIC = 2k —
2In (MLE), where k is the total number of free
parameters, i.e., the number of parameters
allowed to vary in the model, multiplied by the
number of subjects. For example, if ¢, w, b, and
d are allowed to vary freely for 10 subjects, k =
4 X 10 = 40. The model with the lowest AIC
(AIC\N) represents the best balance between
likelihood (high MLE) and parsimony (low k).
AAIC was computed for model i as AAIC; =
AIC,; — AICyn. As a rule of thumb, if AAIC; >
4 the evidence for model ¢ is considered weak
relative to the model with the lowest AIC (the
best fitting model). This is because the
likelihood of model i relative to the best fitting
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model is exp(AAIC;/2) (Anderson & Burn-
ham, 2002), and with AAIC; > 4, it at least & ~

For nonrefractory models, fix 8 at zero. For
single exponential models, fix ¢ at zero.

7 times more likely to observe the data using
the best fitting model than using model .
Following this rule, the simplest model (lowest
k) with AAIC; < 4 was favored.

APPENDIX C

REFRACTORY BI-EXPONENTIAL MODEL PARAMETERS

APPENDIX B The following tables show estimates of ¢, 9,
w, and b in separate tables. Estimates are
shown separately for each individual rat in
each experimental condition. Estimates were
obtained for each daily session. For the VI and
Tandem conditions, the mean estimate of the

last four sessions is shown.

PROBABILITY OF THE INTERVAL BETWEEN THE LAST
RESPONSE IN A SESSION AND THE END OF THE SESSION

Let us assume that the animal emitted its last
response of the session at time L, and that the
session ended at time S. Then, under the
assumption of the dynamic refractory bi-
exponential model, the probability that an
animal emits no responses between L and Sis:

p(no response between L and S

S—L<8)=1
p(no response between L and S|S—L>9)=
(1_q)e—w(S—L—S)_’_qe—b(S—L—E‘)).

—~

Al)

Table C1

Estimates of parameter ¢ (probability of quitting a response bout).

Low workload lever High workload lever

Rat VI Tandem Food Dep VI Tandem Food Dep
505 0.52 0.16 0.12 0.11 0.09 0.08
507 0.26 0.14 0.14 0.25 0.13 0.15
517 0.48 0.15 0.17 0.32 0.13 0.13
519 0.43 0.24 0.20 0.73 0.14 0.14
520 0.67 0.12 0.07 0.75 0.13 0.10
521 0.47 0.16 0.15 0.38 0.13 0.13
Table C2
Estimates of parameter & (minimum IRT duration) in seconds.
Low workload lever High workload lever
Rat VI Tandem Food Dep VI Tandem Food Dep
505 0.08 0.08 0.06 0.10 0.09 0.07
507 0.09 0.07 0.09 0.11 0.07 0.08
517 0.08 0.08 0.08 0.06 0.13 0.16
519 0.18 0.10 0.06 0.27 0.08 0.06
520 0.18 0.10 0.09 0.28 0.09 0.08
521 0.06 0.06 0.06 0.17 0.09 0.09
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Table C3

Estimates of parameter w (within-bout response rate) in responses per second.

Low workload lever

High workload lever

Rat VI Tandem Food Dep Vi Tandem Food Dep
505 2.07 3.31 3.48 2.34 4.69 3.17
507 1.91 2.91 3.16 1.71 3.79 3.54
517 5.31 3.11 2.59 3.14 8.60 17.13
519 1.06 4.03 4.48 417 5.69 5.43
520 1.15 3.90 3.14 2.52 3.09 3.17
521 2.27 6.09 7.30 3.90 9.56 9.98
Table C4
Estimates of parameter b (rate of bout initiation) in responses per second.
Low workload lever High workload lever
Rat VI Tandem Food Dep VI Tandem Food Dep
505 0.20 0.13 0.19 0.11 0.06 0.15
507 0.34 0.19 0.23 0.11 0.18 0.21
517 0.17 0.08 0.24 0.12 0.06 0.09
519 0.14 0.11 0.28 0.05 0.10 0.33
520 0.08 0.03 0.05 0.04 0.02 0.03
521 0.25 0.23 0.33 0.18 0.11 0.23
APPENDIX D animal emits no responses between L and Sis:

PROBABILITY OF THE INTERVAL BETWEEN THE LAST
RESPONSE IN A SESSION AND THE END OF THE SESSION,
ACCORDING TO THE DYNAMIC MODEL

Let us assume that the animal emitted its last
response of the session at time L, and that the
session ended at time S. Then, under the
assumption of the dynamic refractory bi-
exponential model, the probability that an

p(no response between L and S|S—L<d)=1
p(no response between L and S|S—L>9)=

(1 _ qL)e_wL(S_L_a) +qLe_bL(S_L_6), (AQ)
where ¢y, w;, and b;, are calculated by substi-
tuting L into ¢ in Equation 5. For nonrefrac-
tory models, fix 6 at zero. For single exponen-
tial models, fix ¢ at zero.



